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A fistract —Pulse dispersion in siugle-mode optical fibers with step-in-

dex profiles has been analyzed in the past using asymptotic methods. One

of these methods is based on the approximate characteristic equation for

the dominant mode of propagation in these structures, obtained using the

“weakly guided” condition. Other methods use approximations for certain
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parameters of this equation. Utiliiing nmuericaf methods of differentiation

and interpolation, we have developed a method for the anafysis of pulse

dispersion in these fibers that is hased on solutions of the exact character-

istic equation. Exact formulas for the parameters necessary for this study

have been established and developed to the point where the steps that

would follow, involving extensive analytical effort, are replaced by compu-

tational procedures. We make comparisons between our method and those

that, although based on asymptotic expressions, present the best theoretical

characteristics. The differences found are rfisenssed. This method permits

greater precision in prediction of the ideaf laser wavelength for use with a

given single-mode optical fiber.

I. INTRODUCTION

D ISTORTION OF pulses in siugle-mode optical fibers

with step-index profiles results from a combination

of dispersive effects that are due to the wavelength (A)

dependence of the refractive indexes of the lightguide
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materials and also due to the wavelength dependence of

the group delay of the single propagating mode.

The first effect is known as material dispersion and

depends only on the materials used in the fiber. In this

paper we assume that the refractive indexes of both core

and cladding, n, and n ~, respectively, follow the three-term

Sellmeier equation [1]

3 A,A2
n;=l+ ~ y----

,=, A–I;’
j=l,2 (1)

where A, are constants related to the number of particles in

the material that can oscillate at wavelengths 1,.

The second effect, called waveguide dispersion, is a

consequence only of the waveguiding properties of the

optical fiber. This dispersion depends on the core radius,

the propagation constant of the selected dominant mode

(HE, ~), and some of its derivatives. By definition [2], this

waveguide dispersion is computed keeping the refractive

indexes of the core and cladding constant with wavelength.

The combination of the above two dispersive effects

gives the total dispersion (or, simply, dispersion) of pulses

bounded in a single-mode fiber. Since this dispersion limits

the useful bandwidth of optical communication systems,

one should use a wavelength that minimizes this effect.

The wavelength for minimum dispersion ~ has been

computed using asymptotic formulas. This approach has

been used because, in most cases, the relative difference of

refractive indexes of the core and cladding, given by

A=(nl–n2)/n2 (2)

is small.

The condition A<< 1 allows a substantial simplification of

the exact characteristic equation that is the starting point

for the dispersion analysis of the selected optical fiber. Two

asymptotic procedures have been employed which we will

briefly describe as follows:

1) One involves working with the values of the dominant

mode propagation constant obtained directly from the

solution of the approximate characteristic equation and

using first analytical expressions and then numerical meth-

ods to obtain the values of some of the derivatives of the

dominant mode propagation constant.

2) The other involves working with approximations for

the parameters of the approximate characteristic equation

(these are analytically simple formulas) and using these

expressions to obtain the values of the HE ~, mode propa-

gation constant and some of its derivatives.

These procedures lead to some results which are not very

satisfying [3].
In this paper we describe an analytical and computa-

tional procedure to obtain ~. Exact expressions for the

necessary parameters involved are developed up to the

point where subsequent deductions would be very labori-

ous; at this stage, the analytical effort was replaced by

numerical differentiation and interpolation. We also com-

pare our results with some approximate methods that, in

our opinion [4], show the best theoretical characteristics.

Two of these methods [2], [5], [6] use Procedure (1) above,

while the other [7] uses Procedure (2).

In Section II, we present the analytical formalism used

in our analysis and, in Section III, give an outline of the

computational procedure. In Section IV we make some

numerical comparisons between our method and some

methods based on approximate formulas.

II. EXACT EQUATIONS FOR TOTAL DISPERSION

ANALYSIS

Total dispersion, as discussed in Section I, is given by [4]

~_ldNT
T C d~

(3)

where c is the speed of light in free space and NT is the

total group index given by

‘T=i+N2+(%+b)’l(4)

where

8=nlN1–n2N2 (5)

Nz=n,–~~, Z=1,2

ne={n~+(n~ –n~)b}*’2.

(6)

(7)

In (4)–(7), b is the normalized propagation constant for the

HE ~, mode, V is a normalized frequency, Nl(i = 1,2) are

the group indexes of the core and cladding, respectively,

and n. is the effective phase index, i.e., the phase index

“seen” by the HE,, mode propagating in the optical fiber

under consideration.
The normalized propagation constant is given by

b= W2/V2=l– U2/V2 (8)

where

v= 27ra--(n Lny (9)

and a k the core radius of fiber. The parameter U (or w)

comes from the solution of the exact characteristic equa-

tion [8]

(J++ K+)(CJ-– K-)+( J- -K-)(c.1+ +K+)=o
(lo)

where

~+ = J.+,(U) ~_ = .Ju_,(u)
UJV(U) UJV(U)

(11)

~+ = ~v+l(w) ~_ = Ku_*(w)

WK.(W) WK.(w)
(12)

using v equal to unity. In (11) and (12), J and K are Bessel

functions and modified Hankel functions, respectively. The

electrical permittivit y in (10) is given by

‘=n?/’n;. (13)

Taking into account the wavelength dependence of the
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parameters involved in the total group index, (3) becomes

{

~ =! ‘1 A2– A3A4

TC A5 }

where

Al=ne

‘2=+2+(+,-+4:%+’)
W2

{-

vd2b db—

2A(n~–n~) dV2 ‘3W 1
‘3=n2N2+(H%+b)’

(A4=: (1–b)n2n@$v+nlnjb
e 1

(14)

(15)

(16)

(17)

(18)

(19)

(20a)

(20b)

(20C)

The prime on nJ indicates differentiation with respect to

wavelength. The subscript j can be either 1 or 2.

To operate the fiber at the maximum transmission rate,

we must select the wavelength that corresponds to mini-~

mum total dispersion. Thus we select A such that

DTIA=: =0. (21)

In Section III we show the computational procedure

used to solve (21).

III. COMPUTATIONAL PROCEDURE

We implemented a computer program (Fortran-IV lan-

guage, double precision) to solve (21) for ~. Our program

accepts as inputs either of two sets of parameters: a) core

radius a, in micrometers; relative difference between re-

fractive indexes A given by (2); coefficients (Az, 11) of

Sellmeier’s three-term equation for the fiber cladding; orb)

core radius a, in micrometers; coefficients of Sellmeier’s

three-term equation for the core (A,, 1, – N) and for the

cladding (AZ, 1,– C).

In case a), by knowing A, it is possible to compute the

core phase index using

n1=(l+A)n2. (22)

In case b), the phase indexes of the core and cladding are

fixed a priori by Sellmeier’s coefficients for both materials.

Note that while A is fixed in case a), this parameter is

wavelength dependent in case b). To consider A constant

with wavelength is a theoretical abstraction, and in our
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computer program we only considered this case for com-

parison with Chang’s results [5], [6].

Values of the normalized propagation constant for the

dominant mode, (8), were computed for wavelengths in the

range

oo8<~<2.() pm (23)

using the solutions of the exact characteristic equation. For

this purpose we used some standard Scientific Subroutine

Package (SSP) subroutines [9] such as BESJ and BESK,

modified for double precision, for the computation of the

functions J and K, respectively, and DRTMI (Mueller’s

method) to solve the transcendental equation (10).

Due to analytical complexity, the values of db/dV for

each normalized frequency (a vector) were computed by

subroutine DDGT3 of SSP; a second entry in this same

subroutine gives d 2b/dV2. These two derivatives are used

in the computation of the total dispersion DT. Knowing the

vectors DT and A, subroutine DRTMI is used again, supple-

mented by another that uses Lagrange interpolation to

compute the value of ~. All this computation is done in

approximately one minute on a PDP- 10 computer in the

time-sharing, mode.

Other computer programs needed for comparison purpo-

ses were implemented based on the works of Chang [5], [6],

Marcuse [2], and South [7], using the same approach

selected by these authors for the analysis of total disper-

sion. These results are compared with ours in Section IV.

IV. NUMERICAL RESULTS

In this section, the results found using the procedures of

Sections II and III are compared with those using asymp-

totic expressions [2], [6], [7] that can be shown to have the

best theoretical characteristics [4]. The coefficients of the

Sellmeier equation for the materials used for comparison

are shown in Table I [10]–[ 12].

Fh-st, we will compare our results with those derived

from Chang [6] (Figs. 1-4). This author uses the “weakly

guiding” formula for the characteristic equation to obtain,

using (8), the value of b. Its derivatives of b with respect to

V are found through complex analytical deductions. He

also gives a simplified expression for the total group index

that results in an approximate formula for DT.
Table II shows the values of ~ and V obtained using our

method together with the input parameters for option a) of

Section III. Fig. 1 shows the variation of ~ with A. In this

figure the core radius was set equal to 5.3 pm. Note that

there are two ranges of A where our result (curve labeled

EXACT ) deviates somewhat from Chang’s (curve labeled

CHANG) [6]. For A in the range 0.4-0.5 percent the

relative errors are approximately 0.06 percent. For values

of A larger than 0.9 percent the two curves tend to sep-

arate. In particular, for the limit shown in Fig. 1, A =0.96

percent and the relative error becomes – 0.13 percent

(~= 1.3287 pm, our method ; ~ = 1.3304 pm, Chang’s

method).

Fig. 2 shows the variation of ~ with the core radius a. In
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Fig 1. Variation of the wavelength for minimum total dispersion i as a
function of the relative difference, A. The fiber has a core diameter of
2 u = 5.3 ~m and Sellmeier coefficients as in Sample 2, Table I, as in [6].

165,
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Fig. 2. Variation of the wavelength for totaf minimum dispersion ~ as a
function of the core radius a. This calculation is also based on Sample

2, Table I, using a value of A = 0.6 percent.
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TABLE I

COEFFICIENTS OF THREE-TERM SELLM81ER EQUATION (SAMPLE
1: ANNEALED; SAMPLE 2: QUENCHED SAMPLE)

— —— —
~MPOSITION COEFFICIENTS OF THE THREE-TERM SELLMEIER EQUATION

SAMPLE
‘e02 ‘2°3 ‘ic’2 ‘1 11 ‘2 ‘2 ‘3 ‘3

1 - - 100 0.6961663 0.0684043 0.4079426 0.1162414 0.8974794 9.896161

2 - - 100 0.69675 0.069066 0.408218 0.115662 0.890815 9.900559

3 13.5 - 86.5 0.73454395 0.08697693 0.42710828 0.11195191 0.82103399 10.84654

4 7.0 - 93.0 0.6869829 0.078087582 0.44479505 0.1155184 0.79073512 10.436628

5 - 13.3 86.7 0.690618 0.0619 0.401996 0.123662 0.898817 9.09896

TABLE II
VALUESOF~ AND V OBTAINED USING OUR METHOD (FIBERS

FROM [5] AND [6])

I TOTAL DISPERSION I

this case we used

core radii where

Ill 5.3 I 0.006 ] 1.4144 I 1.8669 I

1 5.3 0.00484 1.4386 1.6478

1 10.0 0.00104 . 1.3112 1.5813

1 2 5.3 0.006 1.4201 1.8599

2 5.3 0.00484 1.442 1.6418

121 10.0 I 0.00104 I 1.3147 I 1.5775 I

k5 5.3 0.00242 1.3358 1.2507

5 10.0 0.00055 1.2462 1.2064

TABLE III
VALUESOF~ AND V FOR SAMPLE 2 USING A =2.15 PERCENT

(FIRST LINE: OUR APPROACH; SECOND LINE: METHOD OF [6])

COREDIAMETER RELATIVE DIFFERENCE i
v

2a(~m) A (urn)

I I

A=O.6 percent. Weobservea range of

a small difference occurs between our

results and Chang’s results. For the scale of Fig. 2 the

range of a values where this difference is noticeable ex-

tends from 1.75–2.70 pm, approximately. For example, the

relative error in ~ for u =2.0 pm is about 0.12 percent

while for a =2.7 pm this error drops to approximately 0.04

percent.

Using Fig. 1 or 2 it is possible to design a single-mode

optical fiber with a step-index profile to give a minimum

dispersion for the wavelength of the available optical source

using one of two approaches: 1) vary A for a fixed core

radius; or 2) vary the core radius for a fixed A. In addition,

we can see from the above figures that only a small error

will be made by using Chang’s approach in the range

analyzed.

Based on these considerations, Chang [5] designed a

single-mode fiber with a step-index profile to obtain a

minimum dispersion for ~=’ 1,55 pm. This value, 1.55 pm,

is the wavelength for which the lowest attenuation was

obtained for this type of structure [13]. Instead of using the

materials to get this lowest attenuation [13], Chang de-

signed his fiber using Sample 2 of Table I. In [5], Chang

gives the values of core radius and A to obtain minimum

dispersion at 1.55 pm.

To check the results shown in [5], we used our program
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Fig 3. Variation of the wavelength for total minimum dispersion ~ as a
function of core radius a for A =2,15 percent and Sellmeier coefficients

of Sample 2.
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40-

20-
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-20-
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1’

Fig. 4. Dispersion curves for a fiber constructed using Sample 2 material.
Dm is the material dispersion Dg is the waveguide dispersion, and Dr is
the total dispersion, These calculations were made using a core diame-

ter of 2 u = 3,63 pm and a relative difference A =2.15 percent.

(exact method) and a computer program that we have

written following the instructions given in [6]. The two

results are shown in Table III. We noted that, besides the

obvious difference in Table III, there is also a noticeable

difference between what Chang shows [5] and the corre-

sponding value of Table III (following Chang’s approach).

Since the results of Table II (our approach) and those

shown in [6] are practically identical, we conclude that

there is an error in [5].

Fig. 3 shows the variation of ~ with the core radius a for

A =2.15 percent. For a = 1.70 ~m, for instance, the relative

error in ~ between our approach and Chang’s approach is

approximately 2.2 percent while for a = 1.75 Pm this error

increases to about 3.7 percent.

Fig. 4 shows the variation of material ( D~ ), waveguide

( Dg), and total (D~) dispersion for a fiber with A =2.15

percent and 2a z 3.63 pm according to our approach and

to Chang’s approach. The exact analytical expressions for
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60.

DISPERSION -ps/(km-nm)

40.
CLADDING

{

20-

0
10 II 12

-40

-60

Fig. 5. Dispersion curves for a fiber constructed from 13.5 percent

Ge02–86.5 percent Si02 (core, Sample 3, Table I) and 100 percent

Si02 (cladding, Sample 1, Table I), Dm, Dg, and DT are as previously
defined. The core radius is a = 1.75 pm.

,.
TABLE IV

VALUES OF ~ AND V FOR FIBERS USING ANNEALED Si02

CLADDING (-E = OUR MRTHOD, kf = MARCUSE, S = SOUTH)

,. .

13.5% Ge02 1.7689 1.5898 E

1.75
86.5% Si02

1.7542 1.6017 M

1.6661 1.6781 s

13.5% Ge02 1.5646 2.0316 E

2.00 1+576 2.0399 M
86.57i Si02

1.5878 2.0042 s—

7.0% GeO. 1.5562 1.4671 E
L 2.00

93.0% Si02
1.5533 1.4694 M

1.5026 1.5126 s

7.0% GeO. 1.4923 1.7120 E

1
L 2.25 1.4901 1.7142 M

93.0% Si02
1.4662 1.7389 s

Dm and Dg are shown in the Appendix.

We also used the approaches of Marcuse [2] and South

[7] for comparison with ours. The approximate methods of

these authors consider dA /dA # O, which is a realistic

assumption, together with the exact formula for total dis-

persion. Marcuse [2] uses the “weakly-guiding” expression

for the characteristic equation to compute the parameter U
(equal to ~a in [2]) and a numerical method using a

polynomial approximation to compute the derivatives of

this variable. We introduced a small modification [4] in

Marcuse’s computational procedure using analytical ex-

pressions for the derivatives of U following some theoreti-

cal considerations presented by Snyder [14]. South [7] uses

a simplified expression for W for the HE,, mode following

[15], resulting in approximate expressions for b and some

of its derivatives.

Computer programs using the formalisms shown in [2]

(modified) and [7] were implemented for comparison pur-

poses. For these comparisons our program accepts as input

parameters set b) of Section III.
Table IV shows the values of ~ and V computed by our

method and by Marcuse’s and South’s approaches (E, M,

and S, respectively). One observes that Marcuse’s results

are much closer to ours than are those of South.

Fig. 5 shows curves for material, waveguide, and total

dispersion for our method and those presented in [2] and
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Fig. 6. Vanationof thewavelength forminimum total dispersion ~asa
function ofcoreradius a. Thecorematerialls 13.5 percent Ge02-86.5
percent Si02(Sarnple 3, Table I). Thecladding material is 100 percent
annealed Si02 (Sample l, Table I).

TABLE V

PERCENTAGE ERRORS FOR ~ FOR DIFFEZCENTVALUES OF a (FIBER
Is THAT OF FIG. 5.) (a) ~ARCUSE’S METHOD: (b) SOUTH’S

METHOD:

CORERADIUS 61

a @m) (urn)

2.25 0.06 I
(a)

=
(b)

[7]. For this case the fiber has a core radius of 1.75 pm and

is made with 13.5 percent Ge02 and 86.5 percent Si02 in

the core and Si02 as the cladding (samples 3 and 1 of

Table I, respectively).

Fig. 6 shows the variation of ~ with the core radius for

the same fiber materials used in Fig. 5. Table V shows

corresponding relative errorsin i following the procedures

of Marcuse a) and of South b). From these results we see

that the method proposed in [2] has better characteristics

than that used in [7].

Finally, we see that all three approximate methods con-

sidered for comparison have shown some difference from

ours (mainly the approach of [7]) for the wavelength re-

quired for minimum total dispersion. These differences we

ascribe mainly to the use of asymptotic expressions for the

derivatives of the propagation constant of the dominant

mode HE,,.

V. CONCLUSIONS

In this paper we presented an analytical and computa-

tional approach applicable to the study of pulse dispersion
in monomode optical fibers with step refractive index

profile. Our approach uses the exact characteristic equation

for the computation of the normalized propagation con-

stant b of the fundamental mode in these structures. We

also use the exact equation for the total dispersion and

numerical techniques for differentiation (for the derivatives

of b with respect to V) and interpolation (for computation

of i).
Differences between our approach and some approxi-

mate methods analyzed we ascribe to several asymptotic

expressions used by those authors. Our method shows

excellent results in the asymptotic limit and permits an



PIRES et d.: PREDICTION OF LASER WAVELENGTH

accurate extension of analysis for a more extensive range of

fiber parameters.

APPENDIX

This appendix shows the equations required to plot the

material ( Dm ) and waveguide ( Dg ) dispersion curves, shown

in Figs. 4 and 5.

The expression for material dispersion is given by [4]

(Al)

where n“(~) is given by (20c).

The exact expression for the waveguide dispersion is

obtained from the equation for the total dispersion DT

given by ( 14)–(20), keeping the phase indexes of the core

and cladding materials constant with wavelength. Follow-

ing these steps, we obtain [4]

D =_ (nf-ni)~ d’lrg
2Acne{v~+(’-~)%}‘A’)

where

‘g=:{n~+(%+b)e) ‘A’)

is known as the group index of the waveguide, n, is given

by (7), and

d=nf–n~. (A4)
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Equivalent Representations of Nonuniform
Transmission Lines Based on the Extended

Kuroda’s Identity

KUNIKATSU KOBAYASHI, YOSHIAKI NEMOTO, MEMBER, IEEE, AND RISABURO SATO, FELLOW,

IEEE

,4bstract —Knroda’s identity may be extended to circuits consisting of

lumped reactance elements and nonuniform transmission lines. It is shown

that these circuits are equivalent to circuits consisting of cascade connec-

tions of nonuniform transmission lines whose characteristic impedance
distributions are different from original ones, lumped reactance elements,

and ideal transformers. If a characteristic impedance distribution W(x) of

an original nonuniform transmission line is given, a characteristic imped-
ance distribution Z(x) of a transformed nonuniform transmission line may

be uniquely obtained using W(x). Moreover, by using these equivalent

transformations, network functions of these transformed nonuuifonn trans-
mission lines can he derived exactly.

I. INTRODUCTION

I

T IS well known that nonuniform transmission lines

show superior transmission responses than the ones of

uniform transmission lines. But, it is quite difficult to find

the exact network functions of general nonuniform trans-

mission lines from the telegrapher’s equation except some

nonuniform transmission lines [1]–[12].

On the other hand, we showed that the network func-

tions of a class of nonuniform transmission lines can be
exactly derived by using extended Kuroda’s identities to

mixed lumped and distributed circuits [13].

In this paper, we show a method to extend Kuroda’s

identities for mixed lumped and nonuniform distributed

circuits. Nonuniform transmission lines are shown in the
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limit of cascaded transmission lines (CTL’S) when line

length of unit element (UE) approaches zero. By applying

Kuroda’s identities to circuits consisting of a single stub

and CTL’S n times, we can show that Kuroda’s identities

can be extended to circuits consisting of a lumped reac- ,

tance element and a nonuniform transmission line as the

limit case. The transformed circuit becomes the one con-

sisting of a cascade connection of a nonuniform transmis-

sion line, a lumped reactance element, and an ideal trans-

former. Namely, if a characteristic impedance distribution

W(x) of an original nonuniform transmission line can be

integrated, a characteristic impedance distribution Z(x) of

a transformed nonuniform transmission line may be

uniquely obtained using W(x). Also, if an exact network

function of an original nonuniform transmission line is

known, a network function of a transformed nonuniform

transmission line can be obtained exactly. We derive exact

network functions of several nonuniform transmission lines

by applying extended Kuroda’s identity to nth order bi-
nomial form nonuniform transmission line, exponential

transmission line, and hyperbolic secant squared tapered

transmission line.

II. REPRESENTATION OF NONUNIFORM

TRANSMISSION LINES

Cascaded transmission lines (CTL’S) are shown in Fig.

1(a), where line length and a characteristic impedance of a

lossless uniform transmission line (UE) are l/n and ~
(~=l,z,... , n), respectively.
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