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Abstract —Pulse dispersion in single-mode optical fibers with step-in-
dex profiles has been analyzed in the past using asymptotic methods. One
of these methods is based on the approximate characteristic equation for
the dominant mode of propagation in these structures, obtained using the

- “weakly guided” condition. Other methods use approximations for certain
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parameters of this equation. Utilizing numerical methods of differentiation
and interpolation, we have developed a method for the analysis of pulse
dispersion in these fibers that is based on solutions of the exact character-
istic equation. Exact formulas for the parameters necessary for this study
have been established and developed to the point where the steps that
would follow, involving extensive analytical effort, are replaced by compu-
tational procedures. We make comparisons between our method and those
that, although based on asymptotic expressions, present the best theoretical
characteristics. The differences found are discussed. This method permits
greater precision in prediction of the ideal laser wavelength for use with a
given single-mode optical fiber. .

I. INTRODUCTION

ISTORTION OF pulses in single-mode optical fibers
with step-index profiles results from a combination
of dispersive effects that are due to the wavelength (A)
dependence of the refractive indexes of the lightguide

0018-9480 /82 /0200-0131500.75 ©1982 IEEE



132 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-30, NO. 2, FEBRUARY 1982

materials and also due to the wavelength dependence of
the group delay of the single propagating mode.

The first effect is known as material dispersion and
depends only on the materials used in the fiber. In this
paper we assume that the refractive indexes of both core
and cladding, n, and n,, respectively, follow the three-term
Sellmeier equation [1]

3 2
AN
n=1+ L—
/ El -2

j=12 (1)
where A, are constants related to the number of particles in
the material that can oscillate at wavelengths /,.

The second effect, called waveguide dispersion, is a
consequence only of the waveguiding properties of the
optical fiber. This dispersion depends on the core radius,
the propagation constant of the selected dominant mode
(HE,,), and some of its derivatives. By definition [2], this
waveguide dispersion is computed keeping the refractive
indexes of the core and cladding constant with wavelength.

The combination of the above two dispersive effects
gives the total dispersion (or, simply, dispersion) of pulses
bounded in a single-mode fiber. Since this dispersion limits
the useful bandwidth of optical communication systems,
one should use a wavelength that minimizes this effect.

The wavelength for minimum dispersion A has been
computed using asymptotic formulas. This approach has
been used because, in most cases, the relative difference of
refractive indexes of the core and cladding, given by

A:(”l_”z)/”z (2)

is small.

The condition A <1 allows a substantial simplification of
the exact characteristic equation that is the starting point
for the dispersion analysis of the selected optical fiber. Two
asymptotic procedures have been employed which we will
briefly describe as follows:

1) One involves working with the values of the dominant
mode propagation constant obtained directly from the
solution of the approximate characteristic equation and
using first analytical expressions and then numerical meth-
ods to obtain the values of some of the derivatives of the
dominant mode propagation constant.

2) The other involves working with approximations for
the parameters of the approximate characteristic equation
(these are analytically simple formulas) and using these
expressions to obtain the values of the HE,, mode propa-
gation constant and some of its derivatives.

These procedures lead to some results which are not very
satisfying [3].

In this paper we describe an analytical and computa-
tional procedure to obtain A. Exact expressions for the
necessary parameters involved are developed up to the
point where subsequent deductions would be very labori-
ous; at this stage, the analytical effort was replaced by
numerical differentiation and interpolation. We also com-
pare our results with some approximate methods that, in
our opinion [4], show the best theoretical characteristics.

Two of these methods [2], [5], [6] use Procedure (1) above,
while the other [7] uses Procedure (2).

In Section II, we present the analytical formalism used
in our analysis and, in Section III, give an outline of the
computational procedure. In Section IV we make some
numerical comparisons between our method and some
methods based on approximate formulas.

II. ExacTt EQUATIONS FOR TOTAL DISPERSION
ANALYSIS

Total dispersion, as discussed in Section I, is given by [4]

1 dN,

R (3)
where ¢ is the speed of light in free space and Ny is the
total group index given by

Dy

1 V db
NT:Z[n2N2+(7W+b)H} (4)
where
§=n N —n,N, (5)
dn, )
N,:n,—AgX, i=1,2 (6)

ne:{nﬁ—i-(nf—n%)b}l/z. (7)

In (4)—(7), b is the normalized propagation constant for the
HE,, mode, V is a normalized frequency, N,(i=1,2) are
the group indexes of the core and cladding, respectively,
and n, is the effective phase index, i.e., the phase index
“seen” by the HE,, mode propagating in the optical fiber
under consideration.

The normalized propagation constant is given by

b=W?V2=1-U%V? (8)

where

=20 (7 —n3)

V= A (9)

and a is the core radius of fiber. The parameter U (or W)
comes from the solution of the exact characteristic equa-
tion [§]

(J'+ K YNed =K )+(J —K YeJT+KT)=0

(10)
where
+_ hai(U) __J(U)
AR T (7 (1
, _K,(7) __k, (W)
K= WK, (W) - WK, (W) (12)

using » equal to unity. In (11) and (12), J and K are Bessel
functions and modified Hankel functions, respectively. The
electrical permittivity in (10) is given by

(13)

Taking into account the wavelength dependence of the

e=ni/nj.
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parameters involved in the total group index, (3) becomes

1 (A A, — Ay,
D=1 {2%s (14

where
A =n, (15)
V db
A2:¢2+(¢1 )( 2 dV+b)
ve? d?b db
- V—+3— 16
ZA(n%—nz){ av dV} (16)
V db
Ay =n,N, + (2 st%b)o (17)
1 Ve db
A4:Z{(1 bynny— 2% dV+n1n1b} (18)
Ag=n? (19)
and
¢, =Nn,—Ann/ (20a)
5 AR
w=— iy A (20b)
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=1 ()\2 —1 12)

The prime on n, indicates differentiation with respect to

wavelength. The subscript j can be either 1 or 2.
To operate the fiber at the maximum transmission rate,

we must select the wavelength that corresponds to mini--

mum total dispersion. Thus we select A such that
Dyl,3=0. (21)

In Section III we show the computational procedure
used to solve (21).

II1.

We implemented a computer program (Fortran-IV lan-
guage, double precision) to solve (21) for A. Our program
accepts as inputs either of two sets of parameters: a) core
radius a, in micrometers; relative difference between re-
fractive indexes A given by (2); coefficients (A,,/,) of
Sellmeier’s three-term equation for the fiber cladding; or b)
core radius g, in micrometers; coefficients of Sellmeier’s
three-term equation for the core (A4,,/,— N) and for the
cladding (4,,/,— C).

In case a), by knowing A, it is possible to compute the
core phase index using

n=(1+4A)n,.

COMPUTATIONAL PROCEDURE

(22)

In case b), the phase indexes of the core and cladding are
fixed a priori by Sellmeier’s coefficients for both materials.
Note that while A is fixed in case a), this parameter is
wavelength dependent in case b). To consider A constant
with wavelength is a theoretical abstraction, and in our
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computer program we only considered this case for com-
parison with Chang’s results [5], [6].

Values of the normalized propagation constant for the
dominant mode, (8), were computed for wavelengths in the
range

0.8<A<2.0 (23)

using the solutions of the exact characteristic equation. For
this purpose we used some standard Scientific Subroutine
Package (SSP) subroutines [9] such as BESJ and BESK,
modified for double precision, for the computation of the
functions J and K, respectively, and DRT™MI (Mueller’s
method) to solve the transcendental equation (10).

Due to analytical complexity, the values of db/dV for
each normalized frequency (a vector) were computed by
subroutine DDGT3 of SSP; a second entry in this same
subroutine gives d*b/dV 2. These two derivatives are used
in the computation of the total dispersion D;. Knowing the
vectors D, and A, subroutine DRTMI is used again, supple-
mented by another that uses Lagrange interpolation to
compute the value of A. All this computation is done in
approximately one minute on a PDP-10 computer in the
time-sharing mode.

Other computer programs needed for comparison purpo-
ses were implemented based on the works of Chang [5], [6],
Marcuse [2], and South [7], using the same approach
selected by these authors for the analysis of total disper-
sion. These results are compared with ours in Section IV.

pm

IV. NUMERICAL RESULTS

In this section, the results found using the procedures of
Sections II and III are compared with those using asymp-
totic expressions [2], [6], [7] that can be shown to have the
best theoretical characteristics [4]. The coefficients of the
Sellmeier equation for the materials used for comparison
are shown in Table I [10]-[12].

First, we will compare our results with those derived
from Chang [6] (Figs. 1-4). This author uses the “weakly
guiding” formula for the characteristic equation to obtain,
using (8), the value of b. Its derivatives of b with respect to
V are found through complex analytical deductions. He
also gives a simplified expression for the total group index
that results in an approximate formula for D;.

Table 11 shows the values of A and ¥ obtained using our
method together with the input parameters for option a) of
Section III. Fig. 1 shows the variation of A with A. In this
figure the core radius was set equal to 5.3 pm. Note that
there are two ranges of A where our result (curve labeled
EXACT) deviates somewhat from Chang’s (curve labeled
CHANG) [6]. For A in the range 0.4-0.5 percent the
relative errors are approximately 0.06 percent. For values
of A larger than 0.9 percent the two curves tend to sep-
arate. In particular, for the limit shown in Fig. 1, A =0.96
percent and the relative error becomes —0.13 percent
(A=1.3287 pm, our method ; A =1.3304 pm, Chang’s
method).

Fig. 2 shows the variation of A with the core radius a. In
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Fig 1. Variation of the wavelength for minimum total dispersion A as a
function of the relative difference, A. The fiber has a core diameter of
2a =5.3 pm and Sellmeier coefficients as in Sample 2, Table I, as in [6].
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Fig. 2. Variation of the wavelength for total minimum dispersion A as a
function of the core radius a. This calculation is also based on Sample
2, Table I, using a value of A =0.6 percent.
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TABLEI
COEFFICIENTS OF THREE-TERM SELLMEIER EQUATION (SAMPLE
1: ANNEALED; SAMPLE 2: QUENCHED SAMPLE)

COMPOSITIQN COEFFICIENTS OF THE THREE-TERM SELLMEIER EQUATION
SAMPLE | Ge0,,[B,0,] 510, A, 2 A, Z, A %,
1 - - 1100 0.6961663 0.0684043 0.4079426 0.1162414 0.8974794 9.896161
2 - - (100 0.69675 0.069066 0.408218 0.115662 0.890815 9.900559
3 13.5| - |86.5| 0.73454395 0.08697693 0.42710828 0.111951N 0.82103399 10.84654
4 7.0 - 193.0| 0.6869829 0.078087582 | 0.44479505 0.1155184 0.79073512 10.436628
5 - 113.3/86.7 | 0.690618 0.0619 0.401996 0.123662 0.898817 9.09896
A TABLE II
VALUES OF A AND ¥ OBTAINED USING OUR METHOD (FIBERS
FROM [5] AND [6])
TOTAL DISPERSION
SAMPLE CORE 3
DIAMETER RELATIVE DIFFERENCE v
(um) s (um)
1 5.3 0.006 1.4144 1.8669
1 5.3 0.00484 1.4386 1.6478
1 10.0 0.00104 1.3112 1.5813
2 5.3 0.006 1.4201 1.8599
2 5.3 0.00484 1.442 1.6418
2 10.0 0.00104 1.3147 1.5775
2 9.4 0.0019 1.3094 2.0128
5 5.3 0.006 1.3136 2.0049
5 5.3 0.00242 1.3358 1.2567
5 10.0 0.00055 1.2462 1.2064
. TABLE III
VALUES OF A AND V FOR SAMPLE 2 USING A =2.15 PERCENT
(FIRST LINE: OUR APPROACH; SECOND LINE: METHOD OF [6])
CORE DIAMETER RELATIVE DIFFERENCE % v
2a(um) A (pm)
‘ 3.63 0.0215 1.4691 2.3389
‘ 3.63 0.0215 1.4877 2.2972

this case we used A =0.6 percent. We observe a range of
core radii where a small difference occurs between our
results and Chang’s results. For the scale of Fig. 2 the
range of a values where this difference is noticeable ex-
tends from 1.75-2.70 um, approximately. For example, the
relative error in A for ¢=2.0 pm is about 0.12 percent
while for @ =2.7 pm this error drops to approximately 0.04
percent.

Using Fig. 1 or 2 it is possible to design a single-mode
optical fiber with a step-index profile to give a minimum
dispersion for the wavelength of the available optical source
using one of two approaches: 1) vary A for a fixed core
radius; or 2) vary the core radius for a fixed A. In addition,

we can see from the above figures that only a small error
will be made by using Chang’s approach in the range
analyzed.

Based on these considerations, Chang [5] designed a
single-mode fiber with a step-index profile to obtain a
minimum dispersion for A =1.55 wm. This value, 1.55 pm,
is the wavelength for which the lowest attenuation was
obtained for this type of structure [13]. Instead of using the
materials to get this lowest attenuation [13], Chang de-
signed his fiber using Sample 2 of Table 1. In [5], Chang
gives the values of core radius and A to obtain minimum
dispersion at 1.55 pm.

To check the results shown in {5], we used our program



136 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-30, NO. 2, FEBRUARY 1982

2 451
2 35
229 —EXACT
215
2 () 2051
1951
1854
175
1651
1657
. —CHANG
135 v v . - v y . . .
05 065 080 095 ) 125 140 1’55 (70 185
o (um)
Fig 3. Variation of the wavelength for total minimum dispersion A as a
function of core radius a for A =2.15 percent and Sellmeier coefficients
of Sample 2.
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Fig. 4. Dispersion curves for a fiber constructed using Sample 2 material,
D,, is the material dispersion; D, is the waveguide dispersion, and D is
the total dispersion. These calculations were made using a core diame-
ter of 24 =3.63 pm and a relative difference A =2.15 percent.

(exact method) and a computer program that we have
written following the instructions given in [6]. The two
results are shown in Table III. We noted that, besides the
obvious difference in Table IIL. there is also a noticeable
difference between what Chang shows [5] and the corre-
sponding value of Table III (following Chang’s approach).
Since the results of Table II (our approach) and those
shown in [6] are practically identical, we conclude that
there is an error in [5].

Fig. 3 shows the variation of A with the core radius a for
A =2.15 percent. For a = 1.70 um, for instance, the relative
error in A between our approach and Chang’s approach is
approximately 2.2 percent while for a=1.75 pm this error
increases to about 3.7 percent.

Fig. 4 shows the variation of material (D,,), waveguide
(D,). and total (Dy) dispersion for a fiber with A=2.15
percent and 2a =3.63 pm according to our approach and
to Chang’s approach. The exact analytical expressions for
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Fig. 5. Dispersion curves for a fiber constructed from 13.5 percent
Ge0,-86.5 percent SiO, (core, Sample 3, Table I) and 100 percent
Si0, (cladding, Sample 1, Table ). D,,, D,, and Dy are as previously
defined. The core radius is a =1.75 pm.

. TABLEIV
VALUES OF A AND V' FOR FIBERS USING ANNEALED SiO,
CLADDING ( E = OUR METHOD, M =MARCUSE, § = SOUTH)

LR CORE RADIUS 5 v VETHOD
{um} (um) .
13.5% Ge0 1.7689 | 1.5898 E
’ V.75 1.7562 | 1.6017 M
86.5% $10, : .
1.6661 1.6781 5
13.5% GeO 1.5646 | 2.0316 £
¢ 2.00 1.5576 | 2.0399 M
86.5¢ Si0, .
1.5878 | 2.0042 5
7.0% Ged 1.5562 | 1.4671 £
? 2.00 1.5533 1.4694 M
93.0% S0, bl
1.5026 | 1.5126 s
7.0% Ged, 1.4923 | 1.7120 E
93.0% $10 2.25 1.4901 1.7142 M
R 1.4662 | 1.7389 s

D,, and D, are shown in the Appendix.

We also used the approaches of Marcuse [2] and South
[7] for comparison with ours. The approximate methods of
these authors consider dA /dA 0, which is a realistic
assumption, together with the exact formula for total dis-
persion. Marcuse [2] uses the “weakly-guiding” expression
for the characteristic equation to compute the parameter U
(equal to ka in [2]) and a numerical method using a
polynomial approximation to compute the derivatives of
this variable. We introduced a small modification [4] in
Marcuse’s computational procedure using analytical ex-
pressions for the derivatives of U following some theoreti-
cal considerations presented by Snyder [14]. South {7] uses

a simplified expression for W for the HE; mode following
[15], resulting in approximate expressions for b and some
of its derivatives.

Computer programs using the formalisms shown in [2]
(modified) and [7] were implemented for comparison pur-
poses. For these comparisons our program accepts as input
parameters set b) of Section III.

Table IV shows the values of A and ¥ computed by our
method and by Marcuse’s and South’s approaches (E, M,
and S, respectively). One observes that Marcuse’s results
are much closer to ours than are those of South.

Fig. 5 shows curves for material, waveguide, and total
dispersion for our method and those presented in [2] and
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Fig. 6. Variation of the wavelength for minimum total dispersion A as a
function of core radius a. The core material 1s 13.5 percent GeO,-86.5
percent SiO, (Sample 3, Table I). The cladding material is 100 percent
annealed SiO, (Sample 1, Table I).

TABLEV
PERCENTAGE ERRORS FOR A FOR DIFFERENT VALUES OF g (FIBER
Is THAT oF F1G. 5.) (a) MARCUSE’S METHOD: (b) SOUTH’S

Table I, respectively). R
Fig. 6 shows the variation of A with the core radius for
the same fiber materials used in Fig. 5. Table V shows

METHOD:
= corresponding relative errors in A following the procedures
CORE RADIUS 8
of Marcuse a) and of South b). From these results we see
a(um) (um) . ..
that the method proposed in [2] has better characteristics
1.10 -0.25 than that used in [7].
140 0.24 Finally, we see that all three approximate methods con-
sidered for comparison have shown some difference from
1.60 0.66 ours (mainly the approach of [7]) for the wavelength re-
175 0.84 quired for minimum total dispersion. These differences we
ascribe mainly to the use of asymptotic expressions for the
2.10 0.25 derivatives of the propagation constant of the dominant
2.25 0.06 mode HE,;.
(a) V. CoNcLUsIONS
. In this paper we presented an analytical and computa-
CORE RADIUS & tional approach applicable to the study of pulse dispersion
() R in monomode optical fibers with step refractive index
1.65 7.17 profile. Our approach uses the exact characteristic equation
for the computation of the normalized propagation con-
179 = stant b of the fundamental mode in these structures. We
2.10 -3.99 also use the exact equation for the total dispersion and
numerical techniques for differentiation (for the derivatives
2.25 © -6.6] of b with respect to V') and interpélation (for computation
of A).

Differences between our approach and some approxi-

[7]. For this case the fiber has a core radius of 1.75 pm and
is made with 13.5 percent GeO, and 86.5 percent SiO, in
the core and SiO, as the cladding (samples 3 and 1 of

mate methods analyzed we ascribe to several asymptotic
expressions used by those authors. Our method shows
excellent results in the asymptotic limit and permits an
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accurate extension of analysis for a more extensive range of
fiber parameters.

APPENDIX

This appendix shows the equations required to plot the
material (D,,) and waveguide (D, ) dispersion curves, shown
in Figs. 4 and 5.

The expression for material dispersion is given by [4]

D,=—2m(A) (A1)
where n”(A) is given by (20c).

The exact expression for the waveguide dispersion is
obtained from the equation for the total dispersion D
given by (14)-(20); keeping the phase indexes of the core
and cladding materials constant with wavelength. Follow-
ing these steps, we obtain [4]

(1))

where

N:nie{n§+(l’i’i+b)a] (A3)

8 2dv

is known as the group index of the waveguide, n, is given
by (7), and

0=n{—n3. (A4)
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Equivalent Representations of Nonuniform
Transmission Lines Based on the Extended
- Kuroda’s Identity

KUNIKATSU KOBAYASHI, YOSHIAKI NEMOTO, MEMBER, IEEE, AND RISABURO SATO, FELLOW,
IEEE ,

Abstract —Kuroda’s identity may be extended to circuits consisting of
lumped reactance elements and nonuniform transmission lines. It is shown
that these circuits are equivalent to circuits consisting of cascade connec-
tions of nonuniform transmission lines whose characteristic impedance
distributions are different from original ones, lumped reactance elements,
and ideal transformers. If a characteristic impedance distribution W{(x) of
an original nonuniform transmission line is given, a characteristic imped-
ance distribution Z(x) of a transformed nonuniform transmission line may
be uniquely obtained using W(x). Moreover, by using these equivalent
transformations, network functions of these transformed nonuniform trans-
mission lines can be derived exactly.

I. INTRODUCTION

T IS well known that nonuniform transmission lines

show superior transmission responses than the ones of
uniform transmission lines. But, it is quite difficult to find
the exact network functions of general nonuniform trans-
mission lines from the telegrapher’s equation except some
nonuniform transmission lines [1]-[12].

On the other hand, we showed that the network func-
tions of a class of nonuniform transmission lines can be
exactly derived by using extended Kuroda’s identities to
mixed lumped and distributed circuits [13].

In this paper, we show a method to extend Kuroda’s
identities for mixed lumped and nonuniform distributed
circuits. Nonuniform transmission lines are shown in the
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limit of cascaded transmission lines (CTL’s) when line
length of unit element (UE) approaches zero. By applying
Kuroda’s identities to circuits consisting of a single stub
and CTL’s n times, we can show that Kuroda’s identities
can be extended to circuits consisting of a lumped reac-
tance element and a nonuniform transmission line as the
limit case. The transformed circuit becomes the one con-
sisting of a cascade connection of a nonuniform transmis-
sion line, a lumped reactance element, and an ideal trans-
former. Namely, if a characteristic impedance distribution
W(x) of an original nonuniform transmission line can be
integrated, a characteristic impedance distribution Z(x) of
a transformed nonuniform transmission line may be
uniquely obtained using W(x). Also, if an exact network
function of an original nonuniform transmission line is
known, a network function of a transformed nonuniform
transmission line can be obtained exactly. We derive exact
network functions of several nonuniform transmission lines
by applying extended Kuroda’s identity to nth order bi-
nomial form nonuniform transmission line, exponential
transmission line, and hyperbolic secant squared tapered
transmission line.

II. REPRESENTATION OF NONUNIFORM
TRANSMISSION LINES

Cascaded transmission lines (CTL’s) are shown in Fig.
1(a), where line length and a characteristic impedance of a
lossless uniform transmission line (UE) are //n and W,
(i=12,---,n), respectively.
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